Extensions 1→N→G→Q→1 with N=S3×C23 and Q=C2

Direct product G=N×Q with N=S3×C23 and Q=C2
dρLabelID
S3×C2448S3xC2^496,230

Semidirect products G=N:Q with N=S3×C23 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×C23)⋊1C2 = D6⋊D4φ: C2/C1C2 ⊆ Out S3×C2324(S3xC2^3):1C296,89
(S3×C23)⋊2C2 = C232D6φ: C2/C1C2 ⊆ Out S3×C2324(S3xC2^3):2C296,144
(S3×C23)⋊3C2 = C22×D12φ: C2/C1C2 ⊆ Out S3×C2348(S3xC2^3):3C296,207
(S3×C23)⋊4C2 = C2×S3×D4φ: C2/C1C2 ⊆ Out S3×C2324(S3xC2^3):4C296,209
(S3×C23)⋊5C2 = C22×C3⋊D4φ: C2/C1C2 ⊆ Out S3×C2348(S3xC2^3):5C296,219

Non-split extensions G=N.Q with N=S3×C23 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×C23).1C2 = S3×C22⋊C4φ: C2/C1C2 ⊆ Out S3×C2324(S3xC2^3).1C296,87
(S3×C23).2C2 = C2×D6⋊C4φ: C2/C1C2 ⊆ Out S3×C2348(S3xC2^3).2C296,134
(S3×C23).3C2 = S3×C22×C4φ: trivial image48(S3xC2^3).3C296,206

׿
×
𝔽